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Most of the general principles used to explain sensory cortical

function have been inferred from experiments performed on

neocortical, primary sensory areas. Attempts to apply a

neocortical view to the study of the gustatory cortex (GC) have

provided only a limited understanding of this area. Failures to

conform GC to classical neocortical principles have been

implicitly interpreted as a demonstration of GC’s uniqueness.

Here we propose to take the opposite perspective, dismissing

GC’s uniqueness and using principles extracted from its study

as a lens for looking at neocortical sensory function. In this

review, we describe three significant findings related to

gustatory cortical function and advocate their relevance for

understanding neocortical sensory areas.
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Introduction
Historically, sensory physiologists interested in under-

standing the computations performed by cortical circuits

have focused their attention on neocortical areas [1–3].

The ability to precisely control the physical variables of a

stimulus, as well as the ease of experimental access have

contributed to rendering visual, somatosensory and audi-

tory cortices primary models for investigating sensory

processing. Electrophysiological studies from these areas

started earlier and engaged larger communities than

studies on chemosensory cortices. As a result, many of

the fundamental principles of sensory, cortical physiology

have been defined by results obtained in these cortices.

The cortical organization in sensory maps [2,4,5], the

presence of columns [1] and stereotyped circuits [6]
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and the hierarchical organization of sensory streams

(i.e. ‘lower’ order areas devoted to signal processing

and ‘higher’ order areas involved in integration) [7] are

just few among the many principles established in neo-

cortical areas. Albeit never explicitly theorized, the

knowledge accumulated on neocortical areas has influ-

enced the way in which chemosensory areas have been

approached. Multiple attempts have been made to adapt

general principles of neocortical processing to either

olfactory or gustatory cortices [8–10]. Failures to fit some

of such principles to chemosensory areas have been

interpreted as evidence for the uniqueness of these

cortices. However, many of the results initially deemed

as specific to chemosensory cortices have proven to gen-

eralize to neocortical areas. For instance, studies of oscil-

lations and their links to sensory coding and cognition

have been pioneered in the olfactory system [11–14].

Similarly, the importance of sensorimotor rhythms has

been first established by looking at sniffing and respira-

tion [15–18]. The recent rise in attention toward the

olfactory cortex has brought into focus its relevance for

understanding general computational principles. Howev-

er, a similar process has not yet occurred for the gustatory

cortex (GC). In the case of GC, the results have been

either viewed as confirmatory of known neocortical prin-

ciples [8,9], or, if unique and unprecedented, treated as an

exotic peculiarity. In this review, we will discuss recent

developments in understanding the function of the gus-

tatory cortex, with the goal of showing how many of the

findings on this area can help us gain an original perspec-

tive on neocortical sensory areas.

Coding of chemosensory information: the
importance of time and dynamics
Neurons in the gustatory cortex are responsible for me-

diating the perception of different taste qualities: sweet,

salty, sour, bitter and umami (just to name the best

studied). GC neurons encode chemosensory information

via time-varying changes in firing rates [19,20]. Initial

analyses of the time course of firing rate activity revealed

a great richness in single neuron responses to intraorally

delivered tastants [20]. Most of the firing rate modulations

revolved around three temporal epochs that encode dif-

ferent aspects of sensory information and unfold on the

relatively long-lasting period of 2.5 s from taste delivery

[20] [19,21�,22,23].

The temporal evolution of taste-evoked activity in GC

has also been analyzed at the neural ensemble level. Use

of the Hidden Markov Model (HMM) to extract specific
www.sciencedirect.com
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patterns of ensemble activity revealed that upon gustatory

stimulation populations of neurons in GC go through dif-

ferent states of partially coordinated activity [24–27,28��].
Each state can last from few to hundreds of milliseconds and

suddenly end, leading the network to a rapid transition into

another state. Multiple lines of evidence prove the impor-

tance of this regime of activity. Analysis of responses to

multiple tastants revealed that each taste quality is associ-

ated with a specific sequence of states [26]. While the

duration of each state and the times at which transitions

occur vary from trial-to-trial, each particular sequence of

states is specific to a certain taste. The sequences generated

by a HMM analysis allowed for a very effective decoding of

stimulus identity, showing that this conceptual and analyti-

cal framework successfully captures how GC encodes sen-

sory information [25,26]. This approach to understanding

how GC encodes gustatory information goes beyond the

traditional single cell perspective, based on tuning curves

computed from averaged data (Figure 1a), and suggests that

sensory cortical processing entails the concerted activity of

populations of neurons.

Understanding sensory cortical activity in terms of meta-

stable states allowed for insights beyond sensory coding.

The description of sudden transitions between states lead

to the suggestion that a stochastic, jumping model of

decision making could account for ingestive decisions more

accurately than the traditional diffusion-to-bound model,

particularly in conditions of noisy signals [29��,30]

(Figure 1). Recent data confirmed this suggestion in both

GC [31�] and lateral intraparietal area (LIP) [32]. Finally,

recent work unveiled that metastability is not limited to

evoked activity, but can also be observed during spontane-

ously ongoing activity [28��] (Figure 1d). Populations of

neurons in GC undergo sudden jumps between states even

in the absence of any overt stimulation. Analysis of firing

rates of single neurons revealed that metastability is not

simply caused by neurons alternating between two regimes

of firing rates. Rather, neurons can produce multiple (i.e.

more than two) firing rates depending on the state (a feature

called multistability). Spontaneous metastability and multi-

stability result from network interactions, as demonstrated

by theoretical analysis and simulations with a network

model of spiking neurons [28��]. Such a model features

balanced excitation/inhibition and a clustered architecture

and generates an attractor landscape that spontaneous

activity explores (Figure 1e). The model built to explain

spontaneous activity could reproduce fundamental features

of stimulus-evoked activity [27,28��], indicating that the

elusive relationship between spontaneous and evoked cor-

tical activity [33] is grounded in the dynamics internally

generated by a network with clustered architecture [34].

GC represents the first primary cortical sensory area for

which the study of metastable ensemble dynamics provides

a unifying view that explains sensory coding, decision-mak-

ing and the relationship between evoked and spontaneous
www.sciencedirect.com 
activity. We believe that this approach could also be produc-

tively adopted to study other primary sensory areas, beyond

taste and olfaction [35].

Integration between sensory and reward
processing
Taste coding is intimately linked with reward processing.

Gustatory stimuli have hedonic valence, they are either

palatable or aversive. The reward value of taste can be

easily measured relying either on consummatory beha-

viors [36,37] or orofacial reactions [38,39]. The ability to

assess objectively different dimensions of reward with

specific behavioral tests has allowed researchers in the

field to explore the involvement of GC in processing

reward. Spatio-temporal patterns of neural activity in GC

account for the palatability and/or aversiveness of taste.

Imaging experiments in rodents revealed that the spatial

representations of taste qualities are plastic and can track

changes in the valence of gustatory stimuli [40]. Exten-

sive analysis of single neuron responses showed that

valence is encoded by the temporal structure of firing

rate changes [21�,23,41]. Specifically, it has been demon-

strated that valence coding emerges with a slow latency

(i.e. �1 s) compared to stimulus onset. Population anal-

yses with HMM confirmed this observation and provided

further evidence indicating that, at a single trial level,

valence coding emerges as a sudden and rapid change in

the state of ensemble activity [31�]. Recent ensemble

recordings in rat GC showed that gapes (i.e. orofacial

reactions of aversion) were reliably preceded by a state

change, suggesting a causal role of GC in evaluating the

palatability of gustatory stimuli. Results from optogenetic

studies confirm GC’s involvement in mediating appeti-

tive and aversive responses [42]. The sources of valence-

related information in GC could be multiple, given its

connectivity with limbic regions [43]. However, clear

evidence points at the amygdala as one of the main

synaptic inputs to GC [44,45] and a fundamental source

of reward-related signals [41,46,47].

The intimate relationship between taste and reward

implies that gustatory stimuli can also be used as outcomes.

Using tastants as unconditioned stimuli in learning para-

digms led to the discovery that GC plays a role in encoding

reward-predictive stimuli [46,48,49��,50]. Training rats to

associate a predictive cue with the availability of multiple

tastants unveiled that GC neurons can be modulated by

non-gustatory, anticipatory cues. The appearance of cue

responses, a phenomenon observed so far only in limbic

areas depends on learning, and can be observed with both

classical and instrumental conditioning paradigms

[46,48,49��]. In addition, neurons in GC can encode both

the general expectation of taste, that is, the expectation

that a general gustatory stimulus is going to be available

regardless of its identity, and the specific expectation of

tastants with opposite valence [49��] (Figure 2). The

obvious question, at this point, is whether this cue-related
Current Opinion in Neurobiology 2016, 40:118–124
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Figure 1
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Metastable dynamics in the gustatory cortex of awake animals. (a) Representative ensemble showing taste-evoked metastable dynamics. Top:

population raster with overlaid the HMM fit; each color represents a different state. Bottom: histograms showing firing rate vectors for each HMM

state. (b) Metastable dynamics and taste quality coding. Left: schematic showing the four different tastants delivered. Right: histogram showing

that an HMM-based classification can outperform a PSTH-based classification. (c) Metastable dynamics and decision-making. Left: schematic

showing the architecture of the decision-making network used to test the role of reproduce metastable in ingestive decisions. Right. Comparison

of the performance for two models of decision-making: deterministic integration (‘ramping’) and stochastic (‘jumping’). The plot shows how

performance depends on network size and internal noise. For a complete analysis of the differences between the two models of decision-making

see Miller and Katz [30]. (d) Representative example of metastable dynamics during spontaneous activity. Top: population raster with overlaid the

Current Opinion in Neurobiology 2016, 40:118–124 www.sciencedirect.com
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Figure 2
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Cross-modal cue responses in the gustatory cortex can encode specific expectations of rewarding or aversive tastants. (a) Go/no go paradigm.

Top: schematic of the behavioral paradigm; one auditory cue predicts the availability of sucrose; the other cue predicts the availability of quinine.

Rats press a lever following the sucrose predicting cue (Suc_Cue) and self-deliver sucrose directly into their mouth. On the contrary, rats refrain

from pressing following the quinine-predicting cue (Q_Cue). Bottom: representative behavioral record a session. The plot shows the percentage of

trials for Suc_Cue (cyan) and Q_Cue (gold) followed by a lever pressing. The solid black line indicates the average performance. (b) Selectivity of

cue responses. Raster plots and peri-stimulus histograms (PSTHs) for two representative units, one selective for Suc_Cue (blue, left) and one

selective for Q_Cue (right, gold). The dotter line overlaying the PSTHs shows the time course of the magnitude of mouth movements. Time

0 represents the onset of the auditory cue. Triangles markers represent lever-presses. The gray shading indicates the temporal window in which

only the cue was present, without any lever-press. (c) Emergence of cue selectivity with learning. The three plots depict the difference in

normalized firing between responses to Suc_Cue and Q_Cue averaged across neurons. A flat line indicates no difference between cue responses

(hence no cue selectivity). Each plot features data from animals at different stage of learning. Top: rats not showing any sign of learning in the first

few sessions; middle: rats showing learning in the first few sessions; bottom: rats extensively trained. Notice how the difference between cue

responses (i.e. the selectivity) increases with learning. Time 0 and gray shadow as in panel b. Dotted horizontal line represents zero difference.

Panels (a)–(c) modified from Gardner and Fontanini [49��].
activity plays any role in guiding behavior, or is just a

byproduct of GC’s connectivity with limbic areas. Behav-

ioral studies relying on pharmacological manipulations of

the activity in GC suggested its involvement in guiding

behavioral choices [51]. A recent study was specifically

designed to investigate the role of cue-related activity in

GC [52]. Mice were trained to associate the delivery of a

food pellet at a food-port with a 10 s long anticipatory cue.

Upon successful training, mice responded to the cue with a

series of conditioned, food-port entries. Inactivation of GC

selectively during the presentation of the cue significantly

reduced the number of food-port entries, indicating that

cue-related activity in GC affects behavior.

While one might argue that taste is unique among the

senses for its intimate relationship with reward, this is
(Figure 1 Legend Continued) HMM fit; each color represents a different st

Model and theory of spontaneous activity. Left: schematic of the clustered 

multistability. Right: Attractor landscape of the spiking network model. The 

neurons inside clusters as a function of the strength of relative intracluster s

intracluster connections at which new clusters are recruited. The numbers o

(configurations with larger clusters have lower firing rates, due to the overal

Panel (a) and (b) modified from Jones et al. [26]; panel (c) modified from Mi

www.sciencedirect.com 
certainly not the case. Stimuli of all sensory modalities

can have an affective dimension, either innately or upon

experience. Alas, only a few studies have focused on such

an important dimension of perception in primary sensory

areas other than GC [53�,54–57].

Multisensoriality in a primary sensory cortex
Neurons in GC are not devoted exclusively to processing the

physiochemical and affective dimensions of taste. Multiple

studies demonstrate that GC can effectively process non-

gustatory, cross-modal stimuli encountered either during the

consumption of food or even before [19,46,49��,58–62].

Evidence for multisensory integration during consumption

comes from experiments showing that single neurons in
ate. Bottom: histograms showing firing rate vectors for each state. (e)

spiking network capable of reproducing spontaneous metastability and

plot shows the number of active clusters and relative firing rates of

ynaptic connections (J+). Vertical dotted lines indicate values of

f activated clusters in each configuration are indicated in red

l inhibition).

ller and Katz [29��]; panel (e) modified from Mazzucato et al. [28��].
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GC can encode tactile, thermal and olfactory information

coming from the oral cavity [61,63]. The integration of

these multimodal, intraoral signals relates to the ability of

perceiving flavor [64–66], the unitary, multisensory per-

cept associated with food consumption. A second form of

multisensory processing, fundamental for forming expec-

tations, can occur in GC before the consumption of food

and triggered by extraoral stimuli [46,49��]. The sight of

food, for instance, successfully activates GC in human

subjects [67]. In alert rats, GC neurons can respond to

sounds, or odors, predicting either the general availability

of taste or specific gustatory stimuli [46,49��] (Figure 2).

Single unit recordings and immediate early gene analysis

demonstrated that cross-modal responses are present be-

fore learning and increase in prevalence and specificity

after stimulus-taste associations [46,49��,50].

While one might argue that the multimodality of GC is a

direct consequence of the intrinsic relationship of tastants

with tactile and odor stimuli, or a consequence of taste being

always preceded by other sensory stimuli, this is not the case.

In the real world, each unimodal sensory stimulus is per-

ceived against the background of other stimuli. Perception is

inherently associated with multisensory integration. While

few studies have indeed investigated cross-modal responses

in primary sensory areas [56–68], we believe not enough

attention has been devoted to this fundamental issue.

Conclusion
In this brief overview, we discussed three lines of inves-

tigation on the function of GC. These approaches have

not been directly influenced by existing theories of neo-

cortical sensory function. Rather, these were efforts di-

rected at understanding GC’s relationship to gustatory

perception and taste-related behaviors. These research

directions have contributed to: Firstly, demonstrate that a

single computational framework can link sensory coding,

sensory-based decisions and spontaneous activity; sec-

ondly, unveil the intimate links between perception and

reward; and finally, define sensory processing in primary

cortices as an inherently multisensory process. Altogeth-

er, this research has shown that the primary gustatory

cortex is not simply an analyzer of physiochemical infor-

mation, but rather an area that integrates perception,

emotion and actions. Of course, one could dismiss all

the results from GC as peculiarities of a ‘unique’ cortex.

After all, one might argue, GC is part of the insula (an area

known to be integrative), has a unique cytoarchitecture

and deals with atypical stimuli. Here we contend that the

opposite attitude may be more productive and could lead

to original insights on the function of neocortical sensory

areas. Time might have come to stop imposing a neocor-

tical view on all the sensory cortices and begin to be

inspired by the chemical senses.
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